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Abstract

Global constitutive equations that model the response of multiphase materials undergoing finite deformations in

which any phases behaves as a rubber-like thermoviscoelastic material are derived. The monolithic thermoviscoelastic

constituent is modeled by a free-energy function which is given by a sum of a long-term contribution, that is based on

the entropic elasticity for thermoelastic polymers, plus a non-equilibrium part which characterizes the viscoelastic

(dissipative) mechanism. The global constitutive relations that govern the behavior of the composite are derived by

using a micromechanical analysis in conjunction with the homogenization technique. Applications are given that

illustrate the response of a rubber-like thermoviscoelastic matrix reinforced by continuous elastic nylon fibers. Results

exhibit the effect of the viscoelasticity on the response of the composite when it is subjected to thermal and mechanical

loadings, as well as its creep and relaxation behavior at room and elevated temperature.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Rubber-like materials are described by the so-called entropic elasticity according to which the defor-

mation is associated with a significant change of entropy but with very small change in internal energy. This

is in contrast to the behavior of metals, glass and ceramics which are described by energetic elasticity

according to which the deformation is associated with significant changes of internal energy. A detailed

discussion of entropic and energetic elasticity is given by Holzapfel (2000). Rubbers exhibit a distinct
behavior referred to as the Gough–Joule effect. In ordinary materials (e.g., metals and ceramics) that are

subjected to prescribed extensions, the gradient of stress with respect to temperature is always negative. In

rubber-like material on the other hand, this gradient becomes positive at prescribed extensions beyond a

critical level, thereafter increasing with extension. Similarly, in ordinary materials that are subjected to
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prescribed loadings, the gradient of deformation with respect to temperature is always positive. In rubber-

like materials this gradient becomes negative for loadings beyond a critical value, thereafter decreasing with

loading. Thus, beyond this critical value, called the thermoelastic inversion point, the rubber has a negative

coefficient of thermal expansion. This anomalous behavior of rubber-like solids can be demonstrated by
hanging a weight on a strip of rubber and changing the temperature. The weight will rise upwards when the

rubber is heated and it will lower when it is cooled. Consequently, free-energy functions which are required

to model the thermoelastic behavior of rubber-like materials must provide this effect. Such free-energy

functions have been proposed by Chadwick (1974), Chadwick and Creasy (1984), Ogden (1992), Morman

(1995), Holzapfel (2000) and Horgan and Saccomandi (2003) for example.

In the rubbery state at low temperatures, rubbers do not exhibit viscoelastic effects such as creep and

relaxation. At elevated temperature on the other hand a temperature-dependent viscoelastic response is

obtained as it was observed, for example, in vulcanized rubber in the temperature range of 100–150 �C
(Tobolsky et al., 1944). Hence free-energy functions that are capable to describe the thermoviscoelas-

tic behavior at finite strains of rubber-like materials at elevated temperatures must be determined.

Such energy functions have been recently proposed by Holzapfel and Simo (1996), Lion (1997) and Re-

ese and Govindjee (1998). The free-energy function of Holzapfel and Simo (1996) is given as a sum of

the long-term behavior of the material and a non-equilibrium part that depends on deformation, tem-

perature and a set of internal variables. The specific form of the free-energy that characterizes the non-

equilibrium state has been determined from the restrictions imposed by the second law of thermodynamics

which implies that the dissipation is non-negative. The stress tensor that is derived from the free-energy
function is given a sum of the stress tensor at equilibrium plus a non-equilibrium part. The latter is gov-

erned by a set of evolution equations in time. A rheological interpretation can be given to this thermovi-

scoelastic free-energy function by considering the generalized one-dimensional Maxwell model. In this case

the internal variables correspond to the viscous strains while the non-equilibrium stresses correspond to the

viscous stresses.

The previous discussion concerns with the modeling of monolithic thermoviscoelastic rubber-like

materials. In order to establish constitutive equations for multiphase composites undergoing large defor-

mations in which one or more phases are thermoviscoelastic rubber-like material, a finite strain micro-
mechanical analysis must be followed. For finite thermoelastic rubber-like matrix composites (namely in

the absence of viscoelastic effects) a micromechanical procedure, based on the homogenization technique

for periodic microstructures, has been carried out by Aboudi (2002) by the analysis of a periodic unit cell

from which the corresponding global constitutive equations were derived. This was achieved by establishing

the mechanical and thermal concentration tensors that relate the local deformation gradient increment

to the global externally applied one. Once these concentration tensors have been established, the derivation

of the overall constitutive relations of the multiphase material can be readily determined. For papers in

which the homogenization procedure is employed to examine the large mechanical deformations of com-
posite materials, see Agah-Tehrani (1990) and Takano et al. (2000), for example.

In a recent publication by Aboudi and Pindera (2004), the capability of the aforementioned microme-

chanical model, referred to as high-fidelity generalized method of cells, to predict the response of contin-

uously reinforced elastic composites undergoing finite deformations, has been demonstrated. This has been

achieved by comparisons with exact elasticity solutions (Horgan, 1995) for a porous composite with four

different types of matrix material under axisymmetric loading, and a finite-element analysis of a repeating

unit cell representative of a unidirectionally-reinforced periodic composite subjected to transverse loading.

The comparisons of the predicted overall responses and internal fields with the exact and finite element
solutions exhibit excellent agreements.

In the present investigation, the thermoviscoelastic constitutive equations at finite strains of multiphase

materials in which any one of phases is governed by the thermoviscoelastic free-energy function of Hol-

zapfel and Simo (1996) for rubber-like materials, are micromechanically established. To this end, the
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analysis of Aboudi (2002) is generalized in order to establish the mechanical, thermal and viscoelastic

tensors that relate the increments of the local deformation gradient and the externally applied global

deformation gradient. These provide, in conjunction with the definition of average quantities, the requested

incremental constitutive equations of the composite. The micromechanical analysis is based on the
homogenization technique of periodic multiphase materials, and is carried out by identifying a repeating

unit cell that is divided into several generic cells. Each generic cell is further divided into four subcells in

which a quadratic expansion of the displacement increment is assumed. An averaging procedure establishes

a set of incremental relations which are based on the satisfaction of the local equilibrium equations,

interfacial traction and displacement continuity conditions, and the satisfaction of periodic boundary

conditions, see Aboudi (2002) for more details.

The resulting global constitutive relations are implemented to study the behavior of a thermovisco-

elastic rubber-like matrix reinforced by continuous elastic nylon fibers. The long-term behavior is char-
acterized by a thermoelastic matrix which is modeled by a free-energy function that is based on the

developments of Chadwick (1974), Chadwick and Creasy (1984) and Morman (1995). Results are given

that illustrate the effect of the viscoelastic mechanism on the response caused by thermal loading in the

presence of constant applied stretches and constant applied stresses both of which are applied in

the transverse (perpendicular) direction to the long fibers. In addition, the behavior of the composite under

free thermal loading is shown. The response of the composite to mechanical loadings, its creep under

constant stress loading and its relaxation under constant stretching are exhibited at room and elevated

temperature.
2. The finite monolithic thermoviscoelastic material

2.1. Helmholtz free-energy function

In this subsection the constitutive relations of the monolithic (unreinforced) thermoviscoelastic material

undergoing finite deformations that have been developed by Holzapfel and Simo (1996) are briefly pre-
sented.

Let F denote the deformation gradient from which the right Cauchy-Green deformation tensor

C ¼ FtF, where Ft denotes the transpose of F, is determined. The Helmholtz free-energy per unit volume is

given by
wðC; h;CaÞ ¼ w1ðC; hÞ þ
XNa

a¼1

� aðC; h;CaÞ ð1Þ
where w1 is the long-term free-energy at equilibrium (at time t ! 1) when the material responds perfectly

elastic,
PNa

a¼1 �
a represents the free-energy that characterizes the non-equilibrium state which provides the

creep and relaxation behavior and h is the temperature. The second-order tensors Ca; a ¼ 1; . . . ;Na, are Na

internal variables (viscous strains-like) that describe the irreversible process. These tensors have the same

role as the deformation tensor C (from which the strain tensor is derived).

The long-term second Piola–Kirchhoff stress tensor S1 at equilibrium and the non-equilibrium stresses

Qa (viscous stresses-like) are given by
S1 ¼ 2
ow1

oC
ð2Þ

Qa ¼ 2
o� a

oC
¼ � o� a

oCa
ð3Þ
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Consequently, the total second Piola–Kirchhoff stress tensor S is determined from
S ¼ S1 þ
XNa

a¼1

Qa ð4Þ
Let waðC; hÞ denote the free-energy associated with the viscoelastic contribution to the a-process. The
corresponding second Piola–Kirchhoff stress tensor Sa is obtained as follows
Sa ¼ 2
owa

oC
ð5Þ
From the second law of thermodynamics, which requires that the internal dissipation is non-negative,

Holzapfel and Simo (1996) obtained the following expression for the dissipative functions � a:
� a ¼ lajCaj2 � 2
owa

oC
Ca þ wa ð6Þ
where la defines a non-negative temperature-dependent parameter. This is followed by the evolution

equations for Qa (which are motivated by the linear generalized Maxwell model) that are given by
_Qa þ
Qa

sa
¼ _Sa � 2 _laCa; Qajt¼0 ¼ 0 ð7Þ
where a dot denotes a derivative with respect to time t,
_la ¼
ola

oh
_h
and sa are relaxation times. The latter depend on the temperature and are commonly characterized by the

Arrhenius exponential equation. The initial conditions in Eq. (7) indicate that at time t ¼ 0 the viscoelastic

stresses vanish. The second term on the right-hand-side of Eq. (7), 2 _laCa, contains temperature-dependent

material parameters and vanishes for isothermal processes.
By employing the first relation in Eq. (3) the following expression for Qa is obtained:
Qa ¼ 2
owa

oC
� 4

o2wa

oCoC
Ca ð8Þ
On the other hand, by employing the second relation in Eq. (3), the following expression can be established:
Qa ¼ �2laCa þ 2
owa

oC
ð9Þ
It follows from Eqs. (8) and (9) that the parameter 2la can be chosen as:
2laI
ð4Þ ¼ 4

o2wa

oCoC
ð10Þ
where Ið4Þ is the fourth-order identity tensor (I ð4Þijkl ¼ ðdikdjl þ dildjkÞ=2, with dij denoting the Kronecker

delta).

For viscoelastic polymers that are composed of identical chains it can be assumed (Holzapfel and Simo,

1996) that
wa ¼ x1
a w

1 ð11Þ

where x1

a are given non-dimensional parameters. It follows from Eq. (10) that
2laI
ð4Þ ¼ x1

a D
1 ð12Þ
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where D1 is the instantaneous fourth-order tangent tensor of the material at equilibrium (t ! 1):
D1 ¼ 4
o2w1

oCoC
ð13Þ
In conclusion, the thermoviscoelastic material at finite strain is characterized by the long-term free-energy

function w1 in conjunction with the dissipative functions given by Eqs. (6), (11) and (12), and the evolution

equation (7). To this end, one needs to specify in addition to the functional form of w1 the temperature-

dependent parameters sa and the non-dimensional parameters x1
a .

2.2. Long-term free-energy for the finite deformations of rubber-like solids

The structure of free-energy functions of rubber-like solids are based on entropic elasticity (Holzapfel,

2000) and must provide the so called Gough–Joule effect. In the present investigation, the free-energy

function for the large deformation a rubber-like solid that has been established by Chadwick (1974),

Chadwick and Creasy (1984) and Morman (1995) is employed to model the long-term free-energy function

w1 of the finite thermoviscoelastic material. It has also been employed by Aboudi (2002) to analyze the

behavior of thermoelastic rubber-like matrix composites. It is given by
w1ðC; hÞ ¼ j gðJÞ h
h0

�
� a0hðJÞðh� h0Þ

�
þ G f ðCÞ h

h0

�
� clðCÞ h

h0

�
� 1

��
þ w2ðhÞ � w2ðh0Þ

h
h0

ð14Þ
where j, G, a0 are the initial bulk, shear and volume coefficient of thermal expansion, respectively, cð06 c1Þ
is a non-dimensional scalar and w2 is a function of temperature with h0 being a reference temperature. The

volumetric response functions gðJÞ and hðJÞ, where J ¼ det F > 0, can be determined from the pressure–

volume–temperature relation of the thermoelastic material. These functions are given by Chadwick (1974)

in the form
gðJÞ ¼ 1

m
J
�

þ J 1�m

m� 1
� m
m� 1

�
ðm > 1Þ ð15Þ

hðJÞ ¼ 1

n
ðJn � 1Þ ðn > 1Þ ð16Þ
The distortional functions f ðCÞ and lðCÞ were chosen by Morman (1995) as follows
f ðCÞ ¼ 1

G
c10ðI1
h

� 3J 2=3Þ þ c01ðI2 � 3J 4=3Þ þ c11ðI1 � 3J 2=3ÞðI2 � 3J 4=3Þ þ c20ðI1 � 3J 2=3Þ2

þ c30ðI1 � 3J 2=3Þ3
i

ð17Þ
where c10, c01, c11, c20, c30 are material constants, and I1 and I2 are the first and second invariants of C,

namely,
I1 ¼ tr C ¼ Cii

I2 ¼
1

2
ðtr2C� tr C2Þ
and
lðCÞ ¼ ð1� cÞf ðCÞ

It should be noted that under dilatational loading in which F11 ¼ F22 ¼ F33 it can be readily verified that

f ðCÞ vanishes, as well as the derivatives of f ðCÞ with respect to C. It is worth mentioning that both the bulk
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and shear moduli depend, according to Eq. (14), linearly on the temperature h. This is consistent with the

Gaussian statistical theory of molecular networks, see Holzapfel (2000).

The second Piola–Kirchhoff stress tensor S1 and the fourth-order tangent tensor D1 are obtained from

w1 by employing Eqs. (2) and (13), respectively. The free-energy functions wa are determined from w1 by
employing Eq. (11).

Finally, the long-term thermal stress tensor c1 is obtained from w1 or S1 by employing the following

relations
c1 ¼ �2
o2w1

oCoh
¼ � oS1

oh
ð18Þ
With the derived expressions for D1 and c1 from the free-energy function w1 as given by Eqs. (13) and

(18), respectively, the following incremental constitutive equation is readily obtained from Eq. (2):
DS1 ¼ 1

2
D1DC� c1Dh ð19Þ
where Dh is the deviation of the temperature h from the reference temperature h0. This equation expresses

the increment of the second Piola–Kirchhoff stress tensor at equilibrium in terms of the deformation and

temperature increments.
2.3. Recurrence formula for the evolution of the non-equilibrium stresses

Elimination of the internal strains Ca from Eq. (9) and their substitution in Eq. (7) in conjunction with
Eq. (5), provides the following form of the evolution equations for the non-equilibrium stresses:
_Qa þ
1

sa

 
� _la

la

!
Qa ¼ _Sa �

_la

la

Sa ð20Þ
so that
QaðtÞ ¼
Z t

0

laðtÞ
laðsÞ

exp

�
� t � s

sa

�
_SaðsÞ
"

� _laðsÞ
laðsÞ

SaðsÞ
#
ds ð21Þ
The value of Qaðt þ DtÞ, where Dt is a time increment, can be obtained from Eq. (21) by expressing the

integral in this equation as a sum of integrals from t ¼ 0 to t and from t to t þ Dt. As a result, the following
approximate recurrence formula can be established:
QaðtþDtÞ � exp

�
�Dt

sa

�
QaðtÞ þ exp

�
� Dt
2sa

�
Saðt
"

þDtÞ 1

 
�Dt

2

_laðtþDtÞ
laðtþDtÞ

!
� SaðtÞ 1

 
þDt

2

_laðtÞ
laðtÞ

!#

ð22Þ
with
SaðtÞ ¼ x1
a S

1ðtÞ ð23Þ
This recurrence formula eliminates the need to store tensor quantities at all previous time steps. It is
referred to by Simo and Hughes (1998) as a one-step unconditionally stable recurrence formula.
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2.4. Incremental constitutive relations

The use of the aforementioned constitutive equations that model the finite deformation of a thermo-

viscoelastic material in the micromechanical analysis that will be described in the sequel leads to a large
system of non-linear algebraic equations. It is more efficient to represent these equations in an incremental

form. This will be shown to yield a system of linear algebraic equations which can be easily handled.

The increment of the second Piola–Kirchhoff stress tensor is given according to Eq. (4) by
DSðtÞ ¼ S1ðtÞ � S1ðt � DtÞ þ
XNa

a¼1

QaðtÞ½ �Qaðt � DtÞ� ¼ DS1ðtÞ þ
XNa

a¼1

DQaðtÞ ð24Þ
By employing Eqs. (22) and (23) the following expression for the increment DSðtÞ is obtained
DSðtÞ ¼ nDS1ðtÞ � Dt
2

gðtÞS1ðtÞ½ þ gðt � DtÞS1ðt � DtÞ� �
XNa

a¼1

faQaðt � DtÞ ð25Þ
where
gðtÞ ¼
XNa

a¼1

x1
a exp

�
� Dt
2sa

�
_laðtÞ
laðtÞ

; n ¼ 1þ
XNa

a¼1

x1
a exp

�
� Dt
2sa

�
; fa ¼ 1� exp

�
� Dt

sa

�

Since the micromechanical analysis is based on the actual stress, let us employ the following relation that

provides the first (non-symmetric) Piola–Kirchhoff stress tensor T in terms of the second Piola–Kirchhoff

stress tensor S
T ¼ SFt ð26Þ
By using the expression of DS given by Eq. (25) and the relation for DS1 given by (19), one can, after some

manipulations, establish the following incremental constitutive law which governs the response of the

thermoviscoelastic material at finite strains:
DT ¼ R DF�H Dh� DV ð27Þ
where R is the current fourth-order tangent tensor which is given by
Rijkl ¼ nD1
iplqðtÞFjpðtÞFkqðtÞ þ djk S1

il ðtÞ
"

þ
XNa

a¼1

QðaÞilðtÞ
#

ð28Þ
H is the second-order thermal stress tensor:
Hij ¼ nc1ip ðtÞFjpðtÞ ð29Þ
and DV is the second-order viscoelastic tensor that accounts for the history of deformation:
DVij ¼
XNa

a¼1

faQðaÞipðt � DtÞFjpðtÞ þ
Dt
2

gðtÞS1
ip ðtÞ

h
þ gðt � DtÞS1

ip ðt � DtÞ
i
FjpðtÞ ð30Þ
It should be noted that since Dt is a small time increment, the order of magnitude of fa is OðDtÞ, which
together with the second term on the right-hand-side of Eq. (30) justifies representing its left-hand-side as

an incremental quantity.
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3. Homogenization

Consider a multiphase composite with a periodic microstructure in the X2 � X3 plane as shown in Fig. 1

where the repeating unit cell used to construct the periodic array is highlighted. In the framework of the
homogenization method, the displacement increment Du is asymptotically expanded in terms of a small

parameter d as follows:
Fig. 1.
DuðXÞ ¼ Du0ðX;YÞ þ dDu1ðX;YÞ þ � � � ð31Þ

where X ¼ ðX1;X2;X3Þ are the initial macroscopic (global) coordinate system, and Y ¼ ðY1; Y2; Y3Þ are the

microscopic (local) initial coordinates that are defined with respect to the repeating unit cell. The size of

the unit cell is further assumed to be much smaller than the size of the body so that the relation between the
global and local systems is
Y ¼ X

d
ð32Þ
where d is a small scaling parameter characterizing the size of the unit cell. This implies that a movement of

order unity on the local scale corresponds to a very small movement on the global scale (for more details

about the homogenization technique the reader is referred to the book by Kalamkarov and Kolpakov

(1997) for example).
The homogenization method is applied to composites with periodic microstructures. Thus
DuqðX;YÞ ¼ DuqðX;Yþ npdpÞ ð33Þ

with q ¼ 0; 1; . . ., where np are arbitrary integer numbers and the constant vectors dp determine the period

of the structure.

Due to the change of coordinates from the global to the local systems the following relation must be

employed in evaluating the derivative of a field quantity:
o

oX
! o

oX
þ 1

d
o

oY
ð34Þ
The quantity Du0 is the displacement increment in the homogenized region and hence it is not functions of

Y. Let
Du0 ¼ Du0ðXÞ � D�u ð35Þ
A multiphase composite with a periodic microstructure in the X2 � X3 plane characterized by a repeating unit cell (highlighted).



J. Aboudi / International Journal of Solids and Structures 41 (2004) 5611–5629 5619
and
Du1 � D~uðX;YÞ ð36Þ
where the latter is the fluctuating displacement increment, which is unknown periodic function with respect

to Y. This displacement increment arises due to the heterogeneity of the medium.

The increment of the deformation gradient is determined from the displacement expansion increment,

Eq. (31), yielding the following expression
DF ¼ D�FðXÞ þ D~FðX;YÞ þ OðdÞ ð37Þ
where
D�FðXÞ ¼ D
o�u

oX
ð38Þ
and
D~FðX;YÞ ¼ D
o~u

oY
ð39Þ
This shows that the increment of the deformation gradient can be represented as a sum of the deformation

gradient increment D�FðXÞ in the composite and the fluctuating deformation gradient increment D~FðX;YÞ.
For a composite that is subjected to homogeneous deformation, one can use Eq. (37) to represent the

displacement increment in the form
DuðX;YÞ ¼ D�FXþ D~uþ Oðd2Þ ð40Þ
which is employed in constructing an approximate displacement field of the cell problem discussed in the

sequel.

For specified values of the average displacement gradient increment, the unknown fluctuating dis-

placement increments are governed by the equilibrium equations subject to periodic boundary conditions

imposed on the displacement and traction increments that are prescribed at the boundaries of the repeating

unit cell. In addition, the continuity of displacement and traction increments at the internal interfaces are

imposed between the phases within the repeating unit cell. The manner of solving the governing equations
for the fluctuating displacement increments in the repeating unit cell is briefly described next. The details of

the analysis for the more general three-dimensional case has been provided by Aboudi (2002).
4. Analysis of the repeating unit cell

The local analysis is performed on the repeating unit cell which is discretized into generic cells as shown
in Fig. 2 for the repeating unit cell highlighted in Fig. 1. The repeating unit cell extends initially over the

region 06 Y2 6H , 06 Y3 6 L. The rectangular grid consists of Nq and Nr generic cells, where q ¼ 1; 2; . . . ;Nq

and r ¼ 1; 2; . . . ;Nr, identify the generic cell in the Y2 � Y3 plane. Each generic cell is further subdivided into

four subcells designated by the pair ðb; cÞ where b; c ¼ 1; 2. The dimensions of the generic cell along the Y2
and Y3 axes are hðqÞ1 ; hðqÞ2 and lðrÞ1 ; lðrÞ2 , respectively, such that
H ¼
XNq

q¼1

ðhðqÞ1 þ hðqÞ2 Þ; L ¼
XNr

r¼1

ðlðrÞ1 þ lðrÞ2 Þ
Following the general displacement field representation for periodic media based on a two-scale expansion,
the subcell displacement increment is approximated as follows (omitting the cell label ðq; rÞ):



Fig. 2. (a) Discretization of the repeating unit cell employed in the present model, (b) generic cell within the repeating unit cell.

5620 J. Aboudi / International Journal of Solids and Structures 41 (2004) 5611–5629
DuðbcÞ ¼ D�FXþ DWðbcÞ
ð00Þ þ �Y ðbÞ

2 DWðbcÞ
ð10Þ þ �Y ðcÞ

3 DWðbcÞ
ð01Þ þ

1

2
3�Y ðbÞ2

2

 
�
hðqÞ2b

4

!
DWðbcÞ

ð20Þ

þ 1

2
3�Y ðcÞ2

3

 
�
lðrÞ2c

4

!
DWðbcÞ

ð02Þ ð41Þ
where DWðbcÞ
ð00Þ, which are the increments of the fluctuating volume-averaged displacements, and the higher-

order terms DWðbcÞ
ðmnÞ must be determined from the governing equations, the periodic boundary conditions

that the fluctuating mechanical field must fulfill, and the interfacial continuity conditions between subcells

all of which are imposed in a surface-average sense. Application of the above equations and conditions

produces a system of 60NqNr algebraic equations in the unknowns DWðbcÞ
ðmnÞ of the form
KDU ¼ Df ð42Þ

where the structural stiffness matrix K contains information on the geometry and current tangent tensors of

the materials within the individual subcells ðbcÞ within the cells comprising the multiphase periodic com-
posite. The increment of the displacement vector DU contains the unknown displacement increment

coefficients in each subcell, i.e.,
DU ¼ ½DUð11Þ
11 ; . . . ;DUð22Þ

NqNr
� ð43Þ
where in subcell ðbcÞ of cell ðq; rÞ these coefficients are
DUðbcÞ
qr ¼ DWð00Þ;DWð10Þ;DWð01Þ;DWð20Þ;DWð02Þ

� �ðbcÞ
qr
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The force vector Df contains information on the externally applied deformation gradient increment D�F, the
thermal stress tensorsHðbcÞ

qr , the temperature deviation Dh and the tensor of viscoelastic increments DVðbcÞ
qr in

the subcell ðbcÞ of cell ðq; rÞ.
5. The homogenized constitutive equations

The homogenized constitutive equations of the multiphase composite are obtained as relations between

the average first Piola–Kirchhoff stress tensor increment D�T, the applied deformation gradient increment

D�F, the temperature increment Dh and the global viscoelastic stress increment D�V as follows.

Once the solution of Eq. (42) has been established, one can proceed and determine the concentra-

tion tensors associated with the defined repeating unit cell. These tensors express the local increment
of the deformation gradient in the cell DFðbcÞ in terms of the increment of the global applied external

deformation gradient D�F, temperature increment Dh and of the viscoelastic deformation gradient increment

DFðbcÞ
V :
DFðbcÞ ¼ AðbcÞD�Fþ aðbcÞDhþ DFðbcÞ
V ð44Þ
In this equation, AðbcÞ and aðbcÞ represent the mechanical and thermal concentration tensors, respectively,

while DFðbcÞ
V is the contribution of the increments of the viscoelastic effects to the local deformation gradient

in the repeating unit cell. The instantaneous mechanical concentration tensor AðbcÞ is computed from
solution of Eq. (42) by imposing Dh ¼ 0 and in the absence of viscoelastic effects, while the current thermal

concentration vector aðbcÞ is computed from the solution of Eq. (42) when D�F ¼ 0 and in the absence of

viscoelastic effects. Finally, the current DFðbcÞ
V is computed from the solution of Eq. (42) when D�F ¼ 0 and

Dh ¼ 0 are imposed.

The stress increment in the subcell is given according to constitutive equation (27) by
DTðbcÞ ¼ RðbcÞDFðbcÞ �HðbcÞDh� DVðbcÞ ð45Þ
Applying the definition of the average increment of the first Piola–Kirchhoff stress tensor over the repeating

unit cell in terms of the subcell stress increment yields
D�T ¼ 1

HL

XNq

q¼1

XNr

r¼1

X2
b;c¼1

hðqÞb lðrÞc ½DTðbcÞ�ðq;rÞ ð46Þ
Consequently, the use of Eqs. (44) and (45) in (46) yields the micromechanically based global constitutive
relations
D�T ¼ R�D�F�H�Dh� D�V ð47Þ
where R� and H� are the instantaneous effective stiffness and effective thermal stress tangent tensors of the

composite which are given by
R� ¼ 1

HL

XNq

q¼1

XNr

r¼1

X2
b;c¼1

hðqÞb lðrÞc RðbcÞAðbcÞ� �ðq;rÞ ð48Þ

H� ¼ � 1

HL

XNq

q¼1

XNr

r¼1

X2
b;c¼1

hðqÞb lðrÞc RðbcÞaðbcÞ
�

�HðbcÞ�ðq;rÞ ð49Þ



5622 J. Aboudi / International Journal of Solids and Structures 41 (2004) 5611–5629
and the increment of the global viscoelastic stress tensor is determined from
Table

Mater

Pro

j
G
m
n
c
a0
c10
c01
c11
c20
c30
D�V ¼ � 1

HL

XNq

q¼1

XNr

r¼1

X2
b;c¼1

hðqÞb lðrÞc RðbcÞDFðbcÞ
V

h
� DVðbcÞ

iðq;rÞ
ð50Þ
Constitutive relations (47) are the micromechanically established equations that govern the global behavior

of thermoviscoelastic multiphase composite undergoing large deformations in which any one of the phases
can be assumed, in general, to be modeled by the incremental thermoviscoelastic equations (27). Elastic,

viscoelastic and thermoelastic behavior multiphase composites at finite strains can be obtained as special

cases of Eq. (47) by an appropriate specialization the constitutive law of the phases.

It should be noted that the instantaneous effective stiffness tensor R� describes the current anisotropic

behavior of the periodic multiphase material. The specific type of the resulting anisotropy depends on the

microstructural architecture of the repeating unit cell.
6. Applications

Let us illustrate the implementation of the established constitutive relations (47) by investigating the

response of a composite material that consists of a rubber-like matrix reinforced by nylon fibers. The

material properties of a thermoelastic vulcanized rubber at a reference temperature h0 ¼ 293 K are given in

Table 1. These properties characterize the long-term behavior of the material. In order to include its vis-

coelastic response, the following parameters have been assumed:
xa ¼
1

2
; sa ¼ 10ða�2Þ; a ¼ 1; . . . ;Na ¼ 6
The nylon fibers have been assumed to behave as a linearly elastic material with Young’s modulus, Pois-

son’s ratio and coefficient of thermal expansion, given, respectively, by (Perry, 1963): 2 GPa, 0.4, 90 · 10�6/

K. The orientation of the fibers is selected to be initially in the X1-direction and their volume fraction is

vf ¼ 0:25.
Results are given for a rubber-like matrix composite that is subjected to:

(1) thermal loading with prescribed transverse stretch,

(2) thermal loading with prescribed transverse stress,

(3) free thermal loading,
1

ial properties of vulcanized rubber at h0 ¼ 293 K (Chadwick, 1974; Morman, 1995)

perty Value

1950 MPa

0.98 MPa

9

2.5
1
6

657· 10�6 /K

0.2357 MPa

0.2426 MPa

)0.567 kPa

7.41 kPa

0.0464 kPa
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(4) transverse uniaxial mechanical loading at room and elevated temperature,

(5) creep caused by the application of a constant transverse uniaxial stress loading at room and elevated

temperature,

(6) relaxation caused by the application of a constant transverse stretch at room and elevated temperature.

Cases (1) and (2) will exhibit the anomalous behavior of the rubber, while case (3) will exhibit the response

in the axial direction (i.e., in the fiber direction) and transverse direction (i.e., perpendicular to the fiber),

and case (4) will exhibit the hysteresis due to the viscoelastic effects and the response rate-dependence. In all

cases the effect of the reinforcement is exhibited by comparison with the corresponding unreinforced

(vf ¼ 0) thermoviscoelastic rubber’s response.

Fig. 3 exhibits the response of the unreinforced rubber-like matrix and the unidirectional composite

caused by the application of a thermal loading in which the temperature is incrementally increased from
h0 ¼ 293 K by 150 K. In addition, constant prescribed stretches F 22 ¼ 1:01 and 1.3 are applied in the

transverse direction. Both the thermoviscoelastic and long-term thermoelastic responses are shown. For the

low stretch value F 22 ¼ 1:01, the ordinary behavior both in the unreinforced matrix and composite is

obtained in which the stress decreases with temperature, namely the stress gradient is negative. For the high

value of the stretch F 22 ¼ 1:3, this gradient is positive in the case of the unreinforced matrix. But in the

composite material with the thermoviscoelastic matrix this trend is reversed yielding again the ordinary

behavior. Thus the combined effect of reinforcement and viscoelastic mechanism has a significant influence

on the material’s thermal response.
The resulting responses caused by aforementioned thermal loading applied on the unreinforced rubber-

like matrix and the unidirectional composite, in conjunction with prescribed transverse stress T 22 of 0.1 and

1 MPa, are shown in Fig. 4. For the lower value of the applied stress, the ordinary behavior where positive

stretch gradients with respect to the temperature are obtained both in the thermoviscoelastic and the long-

term thermoelastic cases. For the higher value of the applied stress, T 22 of 1 MPa, this gradient is reversed

in the elastic case thus exhibiting the anomalous behavior of the unreinforced rubber. As is observed from

this figure, the latter behavior is lost, however, in the presence of viscoelastic effects where the response is

similar to that exhibited by ordinary materials. In conclusion, Figs. 3 and 4 show that for the chosen
material and the associated viscoelastic parameters, the viscoelastic mechanism has a peculiar effect on the

anomalous behavior of the homogeneous rubber-like materials and unidirectional rubber-like matrix
Fig. 3. Stress–temperature response of homogeneous matrix (vf ¼ 0) and unidirectional nylon/rubber composite that are subjected to

two values of prescribed stretches in the transverse 2-direction.



Fig. 4. Stretch–temperature response of homogeneous matrix (vf ¼ 0) and unidirectional nylon/rubber composite that are subjected to

two values of prescribed normal stresses in the transverse 2-direction.
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composites. This peculiar thermomechanical behavior of rubber, which is referred to as the Gough–Joule

effect, depends on the fiber volume fraction, loading direction and viscoelastic mechanism of the constit-

uents.
Let us consider next the case of a free thermal expansion. Here the composite is subjected to an

incremental temperature rise of 150 K from h0 while keeping it stress-free, namely T ij ¼ 0. The resulting

axial F 11 and transverse F 22 ¼ F 33 stretches are shown in Fig. 5 for the homogeneous matrix and unidi-

rectional composite. The effect of reinforcement on the induced stretches is clearly exhibited in this figure.

In linearly elastic materials and composites the stretch–temperature dependence is linear. Consequently, the

effect of the existing non-linear behavior of the matrix on the composite responses can be clearly observed

from the figure. The linear axial stretch–temperature response exhibited by the composite results from the

dominant effect of the linearly elastic nylon fibers. This follows from the high contrast between the nylon
Fig. 5. Axial and transverse stretches against temperature due to the free thermal expansion of the thermoviscoelastic unreinforced

matrix (vf ¼ 0) and unidirectional composite.
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and rubber Young’s moduli which renders the effect of the matrix on the response in the axial direction

(parallel to the fiber) to be negligible. In the transverse direction (perpendicular to the fiber) the effect of

matrix is seen to be dominant. It should be mentioned that as long as a free thermal expansion is con-

sidered, the effect of viscoelastic mechanism has been found to be relatively weak so that the curves shown
in Fig. 5 almost coincide with the corresponding curves computed from the long-term material’s thermo-

elastic constitutive law. As a result, the response does not exhibit rate-dependent effects.

The response of the composite at room and elevated temperatures caused by the application of a uniaxial

transverse stress loading in the 2-direction at two rates is shown in Figs. 6 and 7. Both figures show the

resulting transverse stress T 22 due to a complete cycle of loading–unloading–reloading. The figures exhibit

the effect of reinforcement (by comparison with the response of the homogeneous matrix), the effect of

loading at two values of strain rates: _�F 22 ¼ 0:001 and 1 s�1, and the effect of loading at two temperatures. In
Fig. 6. Stress response at room temperature of the thermoviscoelastic homogeneous matrix (vf ¼ 0) and unidirectional composite to a

complete cycle of transverse uniaxial stress loading applied at two rates.

Fig. 7. Stress response at elevated temperature (h ¼ 400 K) of the thermoviscoelastic homogeneous matrix (vf ¼ 0) and unidirectional

composite to a complete cycle of transverse uniaxial stress loading applied at two rates.
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addition, the figures clearly exhibit the hysteresis loops caused by the viscoelastic mechanism. as well as the

effect of temperature on these loops. It should be noted that due to the process of free temperature loading,

which is required to bring the composite to the elevated temperature h ¼ 400 K prior to the application of

mechanical loading, there is a slight shift in the plot of the response in Fig. 7 before the starting point of the
cycle, as a result of which the entire graph is shifted.

It is also possible to detect the effect of reinforcement and elevated temperature on the composite’s

response to the full cycle of uniaxial transverse stress loading in the 2-direction by plotting F 33 against F 22.

This graph is shown in Fig. 8 where these effects are very well displayed. The aforementioned shift due to

the thermal loading that is required to raise the composite’s temperature from h0 to h ¼ 400 K is clearly

observed.

Figs. 6–8 exhibit the response to one cycle of transverse loading of the matrix and composite. Let us

track the response to a several cycles by plotting it against time. In Fig. 9, the behavior of the rubber-like
matrix and the composite is shown at room and elevated temperature h ¼ 400 K due to five cycles of

uniaxial transverse stress loading applied at a rate of _F 22 ¼ 0:001 s�1. The graphs show the effect of

reinforcement, viscous mechanism and temperature values. The increase with temperature of the bulk and

shear moduli of the rubber matrix, results into the observed increase of the response amplitudes at elevated

temperature. Here too, the shift observed in the response at elevated temperature can be well observed. A

careful examination of the repeated patterns in Fig. 9 displays the attenuation effect caused by the visco-

elastic mechanism.

The effect of viscoelastic mechanisms at room and elevated temperature can be well exhibited by dis-
playing the creep and relaxation behavior of the unreinforced rubber-like matrix and nylon/matrix com-

posite. To this end, Figs. 10 and 11 show the resulting response to a uniaxial transverse stress loading of

T 22 ¼ 2 MPa and a transverse stretch of F 22 ¼ 1:5, respectively, at room and elevated temperature (h ¼ 400

K). Both figures show the variation of the response with time toward the final long-time values which are
Fig. 8. The plot of F 33 against F 22 at room and elevated temperatures (h ¼ 400 K) of the thermoviscoelastic homogeneous (vf ¼ 0) and

unidirectional composite in the case of the application of a complete cycle of transverse uniaxial stress loading applied at a rate of

0.001 s�1.



Fig. 9. Stress response at room and elevated temperatures (h ¼ 400 K) against time of the thermoviscoelastic homogeneous matrix

(vf ¼ 0) and unidirectional composite to five cycles of transverse uniaxial stress loading applied at a rate of 0.001 s�1.

Fig. 10. Creep behavior of the thermoviscoelastic homogeneous matrix (vf ¼ 0) and unidirectional composite caused by the application

of a constant uniaxial transverse stress loading of T 22 ¼ 2 MPa at room and elevated temperature (h ¼ 400 K). The asymptotic values

are represented by horizontal lines.
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depicted by horizontal lines. Both figures show that these asymptotic values are much faster approached by
in the case of the unreinforced matrix than that of the composite (due to the reinforcing effect of the nylon

fibers). In both figures, the shift due to the initial thermal loading which is observed in the creep and

relaxation curves at elevated temperature can be clearly noticed.

In concluding this section it should be mentioned that in the above examples that illustrate the composite

thermoviscoelastic response, the relaxation times have been taken as temperature-independent. In real



Fig. 11. Relaxation behavior of the thermoviscoelastic homogeneous matrix (vf ¼ 0) and unidirectional composite caused by the

application of a constant uniaxial transverse stretch loading of F 22 ¼ 1:5 at room and elevated temperature (h ¼ 400 K). The

asymptotic values are represented by horizontal lines.
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situation the relaxation times decrease as the temperature increases. This implies that faster viscoelastic

effects should be anticipated at elevated temperatures than those shown in these examples.
7. Conclusions

In the present investigation, a micromechanical theory based on the homogenization technique has been

derived in order to establish the global constitutive equations of composites with thermoviscoelastic rubber-

like materials undergoing finite strains. The absence of viscoelastic effects results in composites with

thermoelastic rubber-like phases that are necessarily described by entropic elasticity.

One of the main advantages of the use of micromechanics is that the establishment of composite re-

sponse and its anisotropic behavior are obtained as byproducts of the analysis. Thus, one does not need to

consider anisotropic free-energy functions in order to model, directly, the macro behavior of the therm-

oviscoelastic multiphase material which is obviously a formidable task. In addition, residual stresses in the
composite can be easily obtained by applying, prior to the application of mechanical loadings, a thermal

loading that models the thermal processing.

In the present derivation, a one-way coupling exists between the thermal and mechanical fields namely,

the temperature influences the stresses as in thermal stress problems. Generalization to full thermome-

chanical coupling (two-way coupling) which incorporates the influence of deformation on the thermal field

is possible. The derived constitutive law can be applied to study the response of composite structures, such

as plates and shells, with rubber-like thermoviscoelastic materials.
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