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Abstract

Global constitutive equations that model the response of multiphase materials undergoing finite deformations in
which any phases behaves as a rubber-like thermoviscoelastic material are derived. The monolithic thermoviscoelastic
constituent is modeled by a free-energy function which is given by a sum of a long-term contribution, that is based on
the entropic elasticity for thermoelastic polymers, plus a non-equilibrium part which characterizes the viscoelastic
(dissipative) mechanism. The global constitutive relations that govern the behavior of the composite are derived by
using a micromechanical analysis in conjunction with the homogenization technique. Applications are given that
illustrate the response of a rubber-like thermoviscoelastic matrix reinforced by continuous elastic nylon fibers. Results
exhibit the effect of the viscoelasticity on the response of the composite when it is subjected to thermal and mechanical
loadings, as well as its creep and relaxation behavior at room and elevated temperature.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Rubber-like materials are described by the so-called entropic elasticity according to which the defor-
mation is associated with a significant change of entropy but with very small change in internal energy. This
is in contrast to the behavior of metals, glass and ceramics which are described by energetic elasticity
according to which the deformation is associated with significant changes of internal energy. A detailed
discussion of entropic and energetic elasticity is given by Holzapfel (2000). Rubbers exhibit a distinct
behavior referred to as the Gough—Joule effect. In ordinary materials (e.g., metals and ceramics) that are
subjected to prescribed extensions, the gradient of stress with respect to temperature is always negative. In
rubber-like material on the other hand, this gradient becomes positive at prescribed extensions beyond a
critical level, thereafter increasing with extension. Similarly, in ordinary materials that are subjected to

Tel.: +972-3-640-8131; fax: +972-3-640-7617.
E-mail address: aboudi@eng.tau.ac.il (J. Aboudi).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.04.039


mail to: aboudi@eng.tau.ac.il

5612 J. Aboudi | International Journal of Solids and Structures 41 (2004) 5611-5629

prescribed loadings, the gradient of deformation with respect to temperature is always positive. In rubber-
like materials this gradient becomes negative for loadings beyond a critical value, thereafter decreasing with
loading. Thus, beyond this critical value, called the thermoelastic inversion point, the rubber has a negative
coefficient of thermal expansion. This anomalous behavior of rubber-like solids can be demonstrated by
hanging a weight on a strip of rubber and changing the temperature. The weight will rise upwards when the
rubber is heated and it will lower when it is cooled. Consequently, free-energy functions which are required
to model the thermoelastic behavior of rubber-like materials must provide this effect. Such free-energy
functions have been proposed by Chadwick (1974), Chadwick and Creasy (1984), Ogden (1992), Morman
(1995), Holzapfel (2000) and Horgan and Saccomandi (2003) for example.

In the rubbery state at low temperatures, rubbers do not exhibit viscoelastic effects such as creep and
relaxation. At elevated temperature on the other hand a temperature-dependent viscoelastic response is
obtained as it was observed, for example, in vulcanized rubber in the temperature range of 100-150 °C
(Tobolsky et al., 1944). Hence free-energy functions that are capable to describe the thermoviscoelas-
tic behavior at finite strains of rubber-like materials at elevated temperatures must be determined.
Such energy functions have been recently proposed by Holzapfel and Simo (1996), Lion (1997) and Re-
ese and Govindjee (1998). The free-energy function of Holzapfel and Simo (1996) is given as a sum of
the long-term behavior of the material and a non-equilibrium part that depends on deformation, tem-
perature and a set of internal variables. The specific form of the free-energy that characterizes the non-
equilibrium state has been determined from the restrictions imposed by the second law of thermodynamics
which implies that the dissipation is non-negative. The stress tensor that is derived from the free-energy
function is given a sum of the stress tensor at equilibrium plus a non-equilibrium part. The latter is gov-
erned by a set of evolution equations in time. A rheological interpretation can be given to this thermovi-
scoelastic free-energy function by considering the generalized one-dimensional Maxwell model. In this case
the internal variables correspond to the viscous strains while the non-equilibrium stresses correspond to the
viscous stresses.

The previous discussion concerns with the modeling of monolithic thermoviscoelastic rubber-like
materials. In order to establish constitutive equations for multiphase composites undergoing large defor-
mations in which one or more phases are thermoviscoelastic rubber-like material, a finite strain micro-
mechanical analysis must be followed. For finite thermoelastic rubber-like matrix composites (namely in
the absence of viscoelastic effects) a micromechanical procedure, based on the homogenization technique
for periodic microstructures, has been carried out by Aboudi (2002) by the analysis of a periodic unit cell
from which the corresponding global constitutive equations were derived. This was achieved by establishing
the mechanical and thermal concentration tensors that relate the local deformation gradient increment
to the global externally applied one. Once these concentration tensors have been established, the derivation
of the overall constitutive relations of the multiphase material can be readily determined. For papers in
which the homogenization procedure is employed to examine the large mechanical deformations of com-
posite materials, see Agah-Tehrani (1990) and Takano et al. (2000), for example.

In a recent publication by Aboudi and Pindera (2004), the capability of the aforementioned microme-
chanical model, referred to as high-fidelity generalized method of cells, to predict the response of contin-
uously reinforced elastic composites undergoing finite deformations, has been demonstrated. This has been
achieved by comparisons with exact elasticity solutions (Horgan, 1995) for a porous composite with four
different types of matrix material under axisymmetric loading, and a finite-element analysis of a repeating
unit cell representative of a unidirectionally-reinforced periodic composite subjected to transverse loading.
The comparisons of the predicted overall responses and internal fields with the exact and finite element
solutions exhibit excellent agreements.

In the present investigation, the thermoviscoelastic constitutive equations at finite strains of multiphase
materials in which any one of phases is governed by the thermoviscoelastic free-energy function of Hol-
zapfel and Simo (1996) for rubber-like materials, are micromechanically established. To this end, the
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analysis of Aboudi (2002) is generalized in order to establish the mechanical, thermal and viscoelastic
tensors that relate the increments of the local deformation gradient and the externally applied global
deformation gradient. These provide, in conjunction with the definition of average quantities, the requested
incremental constitutive equations of the composite. The micromechanical analysis is based on the
homogenization technique of periodic multiphase materials, and is carried out by identifying a repeating
unit cell that is divided into several generic cells. Each generic cell is further divided into four subcells in
which a quadratic expansion of the displacement increment is assumed. An averaging procedure establishes
a set of incremental relations which are based on the satisfaction of the local equilibrium equations,
interfacial traction and displacement continuity conditions, and the satisfaction of periodic boundary
conditions, see Aboudi (2002) for more details.

The resulting global constitutive relations are implemented to study the behavior of a thermovisco-
elastic rubber-like matrix reinforced by continuous elastic nylon fibers. The long-term behavior is char-
acterized by a thermoelastic matrix which is modeled by a free-energy function that is based on the
developments of Chadwick (1974), Chadwick and Creasy (1984) and Morman (1995). Results are given
that illustrate the effect of the viscoelastic mechanism on the response caused by thermal loading in the
presence of constant applied stretches and constant applied stresses both of which are applied in
the transverse (perpendicular) direction to the long fibers. In addition, the behavior of the composite under
free thermal loading is shown. The response of the composite to mechanical loadings, its creep under
constant stress loading and its relaxation under constant stretching are exhibited at room and elevated
temperature.

2. The finite monolithic thermoviscoelastic material
2.1. Helmholtz free-energy function

In this subsection the constitutive relations of the monolithic (unreinforced) thermoviscoelastic material
undergoing finite deformations that have been developed by Holzapfel and Simo (1996) are briefly pre-
sented.

Let F denote the deformation gradient from which the right Cauchy-Green deformation tensor
C = F'F, where F' denotes the transpose of F, is determined. The Helmholtz free-energy per unit volume is
given by

Ny
Y(C,0,T,) =y>(C.0)+ ) T(C,0,I,) (1)
a=1
where ™ is the long-term free-energy at equilibrium (at time ¢ — oo) when the material responds perfectly
elastic, Zgil T* represents the free-energy that characterizes the non-equilibrium state which provides the
creep and relaxation behavior and 0 is the temperature. The second-order tensors I'y, 0 = 1,... N, are N,
internal variables (viscous strains-like) that describe the irreversible process. These tensors have the same
role as the deformation tensor C (from which the strain tensor is derived).
The long-term second Piola—Kirchhoff stress tensor S™ at equilibrium and the non-equilibrium stresses
Q,, (viscous stresses-like) are given by

P

g = 2
G @

or- or-
V=3¢ =, )
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Consequently, the total second Piola—Kirchhoff stress tensor S is determined from
Ny
S=S8*+) Q, (4)
a=1

Let y*(C,0) denote the free-energy associated with the viscoelastic contribution to the a-process. The
corresponding second Piola—Kirchhoff stress tensor S, is obtained as follows

oy”

5
From the second law of thermodynamics, which requires that the internal dissipation is non-negative,
Holzapfel and Simo (1996) obtained the following expression for the dissipative functions 7

o”
oC
where u, defines a non-negative temperature-dependent parameter. This is followed by the evolution
equations for Q, (which are motivated by the linear generalized Maxwell model) that are given by

% = Srz - 2ﬂaro¢7 Qaclt:O =0 (7)

S, =2

T =u ‘I‘“|2—2

o

L, +y" (6)

Q, +
where a dot denotes a derivative with respect to time ¢,

. a:uo/. [
:uoc - a() 0
and 1, are relaxation times. The latter depend on the temperature and are commonly characterized by the
Arrhenius exponential equation. The initial conditions in Eq. (7) indicate that at time ¢ = 0 the viscoelastic
stresses vanish. The second term on the right-hand-side of Eq. (7), 24,I,, contains temperature-dependent
material parameters and vanishes for isothermal processes.
By employing the first relation in Eq. (3) the following expression for Q, is obtained:

awcx 621/11

Q. =2%¢ ~*3cac! ®

On the other hand, by employing the second relation in Eq. (3), the following expression can be established:
oy

It follows from Egs. (8) and (9) that the parameter 2p, can be chosen as:
oy
“4) —
2u,1 _46C6C (10)

where I is the fourth-order identity tensor (Il.(;), = (0udj1 + 6404)/2, with J;; denoting the Kronecker
delta).

For viscoelastic polymers that are composed of identical chains it can be assumed (Holzapfel and Simo,
1996) that

Y=oy~ (11)
where w° are given non-dimensional parameters. It follows from Eq. (10) that

2u1® = D> (12)
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where D™ is the instantaneous fourth-order tangent tensor of the material at equilibrium (¢ — oo):
Py
=4 13
oCaC (13)
In conclusion, the thermoviscoelastic material at finite strain is characterized by the long-term free-energy
function Y™ in conjunction with the dissipative functions given by Egs. (6), (11) and (12), and the evolution

equation (7). To this end, one needs to specify in addition to the functional form of > the temperature-
dependent parameters 7, and the non-dimensional parameters w:°.

(o]

2.2. Long-term free-energy for the finite deformations of rubber-like solids

The structure of free-energy functions of rubber-like solids are based on entropic elasticity (Holzapfel,
2000) and must provide the so called Gough-—Joule effect. In the present investigation, the free-energy
function for the large deformation a rubber-like solid that has been established by Chadwick (1974),
Chadwick and Creasy (1984) and Morman (1995) is employed to model the long-term free-energy function
Y™ of the finite thermoviscoelastic material. It has also been employed by Aboudi (2002) to analyze the
behavior of thermoelastic rubber-like matrix composites. It is given by

(€0 = e g = b0~ )] + G| 7€ 11O (- 1) ]+ a0) st (19
o o o 0

where x, G, oy are the initial bulk, shear and volume coefficient of thermal expansion, respectively, y(0 < y1)

is a non-dimensional scalar and v, is a function of temperature with 6, being a reference temperature. The

volumetric response functions g(J) and #(J), where J = det F > 0, can be determined from the pressure—

volume-temperature relation of the thermoelastic material. These functions are given by Chadwick (1974)

in the form

g”*ﬁ%P*é;i_Z%T (m>1) (15)
W)= 1) (> ) (16)

The distortional functions f(C) and /(C) were chosen by Morman (1995) as follows

1
faﬁzzﬂédhASﬁ“)+%ﬂb—3ﬂ“)+qﬂhASﬁ”Xb—3ﬂB)+th43ﬁBf

+ exo(l — 323 (17)
where c0, co1, C11, €20, €30 are material constants, and /; and I, are the first and second invariants of C,
namely,
I] =1tr C == C[,'

L == (tr’C — tr C?)

| =

and
[(C) = (1-9)/(C)

It should be noted that under dilatational loading in which Fj; = F5, = F3;3 it can be readily verified that
f(C) vanishes, as well as the derivatives of f(C) with respect to C. It is worth mentioning that both the bulk
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and shear moduli depend, according to Eq. (14), linearly on the temperature . This is consistent with the
Gaussian statistical theory of molecular networks, see Holzapfel (2000).

The second Piola—Kirchhoff stress tensor S and the fourth-order tangent tensor D™ are obtained from
Y™ by employing Egs. (2) and (13), respectively. The free-energy functions y* are determined from > by
employing Eq. (11).

Finally, the long-term thermal stress tensor > is obtained from ¥ or S™ by employing the following
relations

oy s
0Cco0 00

y =2 (18)

With the derived expressions for D* and y* from the free-energy function > as given by Eqs. (13) and
(18), respectively, the following incremental constitutive equation is readily obtained from Eq. (2):

1
AS™ = 7D AC —y*A) (19)

where A6 is the deviation of the temperature 0 from the reference temperature 6. This equation expresses
the increment of the second Piola—Kirchhoff stress tensor at equilibrium in terms of the deformation and
temperature increments.

2.3. Recurrence formula for the evolution of the non-equilibrium stresses

Elimination of the internal strains I', from Eq. (9) and their substitution in Eq. (7) in conjunction with
Eq. (5), provides the following form of the evolution equations for the non-equilibrium stresses:

so that
_ ' ,uac(t) X _t_S S s _:aoc(s) L s

The value of Q, (¢ + Af), where Atz is a time increment, can be obtained from Eq. (21) by expressing the
integral in this equation as a sum of integrals from ¢ = 0 to ¢ and from ¢ to ¢ + A¢. As a result, the following
approximate recurrence formula can be established:

Sa(t-i-At)(l _%751§§122> —Sj(t)<1 +%za8>]

(22)

Q.+ 8 ~ewp | - ] Q.00 e | 5
with
S.(1) = 07*(0) 23)

This recurrence formula eliminates the need to store tensor quantities at all previous time steps. It is
referred to by Simo and Hughes (1998) as a one-step unconditionally stable recurrence formula.
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2.4. Incremental constitutive relations

The use of the aforementioned constitutive equations that model the finite deformation of a thermo-
viscoelastic material in the micromechanical analysis that will be described in the sequel leads to a large
system of non-linear algebraic equations. It is more efficient to represent these equations in an incremental
form. This will be shown to yield a system of linear algebraic equations which can be easily handled.

The increment of the second Piola—Kirchhoff stress tensor is given according to Eq. (4) by

AS(t) = 8™ (1) — S°°t—At+§: Lt — Af)] = AS™(t ZAQ (24)

=1

<

By employing Egs. (22) and (23) the following expression for the increment AS(¢) is obtained

AS(1) = EAS™ (1) — 3 )™ (1) + n(t — A)S™ (: — A1) Z@Q (25)

Ny A . A A
ﬂ(t):Za)ioeXp[—z—;]Zzg, 5—1+Zw exp[ 2TZ] Cd:I—exp{—T—t}

o

Since the micromechanical analysis is based on the actual stress, let us employ the following relation that
provides the first (non-symmetric) Piola—Kirchhoff stress tensor T in terms of the second Piola—Kirchhoff
stress tensor S

T = SF' (26)

By using the expression of AS given by Eq. (25) and the relation for AS™ given by (19), one can, after some
manipulations, establish the following incremental constitutive law which governs the response of the
thermoviscoelastic material at finite strains:

AT =R AF —H A0 — AV (27)

where R is the current fourth-order tangent tensor which is given by

Rijr = €Dy, (1) Fjp (1) Fig (8) + 0

S (1) + Z Q(x)ff(f)] (28)

a=1
H is the second-order thermal stress tensor:
Hy = &y (HF, (1) (29)

and AV is the second-order viscoelastic tensor that accounts for the history of deformation:
s At . .
AV =3 CQlt = AF(0) + 5 [0S (0) +n(e = Ay (1 = A0)| (1) (30)
=1

It should be noted that since Az is a small time increment, the order of magnitude of {, is O(A¢), which
together with the second term on the right-hand-side of Eq. (30) justifies representing its left-hand-side as
an incremental quantity.
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3. Homogenization

Consider a multiphase composite with a periodic microstructure in the X, — X3 plane as shown in Fig. 1
where the repeating unit cell used to construct the periodic array is highlighted. In the framework of the
homogenization method, the displacement increment Au is asymptotically expanded in terms of a small
parameter ¢ as follows:

Au(X) = Aup(X,Y) + 0An; (X, Y) + - - - (31)

where X = (X;,X,,X3) are the initial macroscopic (global) coordinate system, and Y = (¥}, 5, ¥3) are the
microscopic (local) initial coordinates that are defined with respect to the repeating unit cell. The size of
the unit cell is further assumed to be much smaller than the size of the body so that the relation between the
global and local systems is

X
Y=5 (32)

where 9 is a small scaling parameter characterizing the size of the unit cell. This implies that a movement of
order unity on the local scale corresponds to a very small movement on the global scale (for more details
about the homogenization technique the reader is referred to the book by Kalamkarov and Kolpakov
(1997) for example).

The homogenization method is applied to composites with periodic microstructures. Thus

Au, (X, Y) = Au, (X, Y +n,d,) (33)

with p = 0,1, ..., where n, are arbitrary integer numbers and the constant vectors d,, determine the period
of the structure.
Due to the change of coordinates from the global to the local systems the following relation must be

employed in evaluating the derivative of a field quantity:

0 o 10

—_ - —

oX 0X 00Y
The quantity Auy is the displacement increment in the homogenized region and hence it is not functions of
Y. Let

Auy = Aug(X) = Au (35)

(34)
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Fig. 1. A multiphase composite with a periodic microstructure in the X, — X5 plane characterized by a repeating unit cell (highlighted).
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and
Au; = Au(X,Y) (36)

where the latter is the fluctuating displacement increment, which is unknown periodic function with respect
to Y. This displacement increment arises due to the heterogeneity of the medium.

The increment of the deformation gradient is determined from the displacement expansion increment,
Eq. (31), yielding the following expression

AF = AF(X) + AF(X,Y) 4 0(9) (37)
where

AF(X) = As—;; (38)
and

AF(X,Y) = AS—; (39)

This shows that the increment of the deformation gradient can be represented as a sum of the deformation
gradient increment AF(X) in the composite and the fluctuating deformation gradient increment AF(X,Y).

For a composite that is subjected to homogeneous deformation, one can use Eq. (37) to represent the
displacement increment in the form

Au(X,Y) = AFX + Aa + 0(5%) (40)

which is employed in constructing an approximate displacement field of the cell problem discussed in the
sequel.

For specified values of the average displacement gradient increment, the unknown fluctuating dis-
placement increments are governed by the equilibrium equations subject to periodic boundary conditions
imposed on the displacement and traction increments that are prescribed at the boundaries of the repeating
unit cell. In addition, the continuity of displacement and traction increments at the internal interfaces are
imposed between the phases within the repeating unit cell. The manner of solving the governing equations
for the fluctuating displacement increments in the repeating unit cell is briefly described next. The details of
the analysis for the more general three-dimensional case has been provided by Aboudi (2002).

4. Analysis of the repeating unit cell

The local analysis is performed on the repeating unit cell which is discretized into generic cells as shown
in Fig. 2 for the repeating unit cell highlighted in Fig. 1. The repeating unit cell extends initially over the
region 0 < > <H, 0 < Y3 < L. The rectangular grid consists of N, and N, generic cells, where ¢ = 1,2,... N,
and » = 1,2,..., N, identify the generic cell in the ¥, — Y3 plane. Each generic cell is further subdivided into
four subcells demgnated by the pair (f3,y) where 8,7 = 1,2. The dimensions of the generic cell along the ¥,

and Y; axes are hl ,h and /| | 0, g), respectively, such that

Ny Ny
H= (0" +n), L= (17+1
g=1 r=1

Following the general displacement field representation for periodic media based on a two-scale expansion,
the subcell displacement increment is approximated as follows (omitting the cell label (g, r)):



5620 J. Aboudi | International Journal of Solids and Structures 41 (2004) 5611-5629

p=2, y=1 B=2, y=2
p=1, v=1 B=1, y=2
¢,® A
generic cell (q,r)
(b)
Fig. 2. (a) Discretization of the repeating unit cell employed in the present model, (b) generic cell within the repeating unit cell.
= ) | (B B) | i L[ a52 h”? By
Au") = AFX + AW + BPAW + BPAWG + 5 (3577 - | AW
Ll 52 vwi
+3 <3Y3> — | AW (41)

where AWE%;, which are the increments of the fluctuating volume-averaged displacements, and the higher-
order terms AWEin) must be determined from the governing equations, the periodic boundary conditions
that the fluctuating mechanical field must fulfill, and the interfacial continuity conditions between subcells
all of which are imposed in a surface-average sense. Application of the above equations and conditions
produces a system of 60N,N, algebraic equations in the unknowns AWEﬁ ") of the form

mn)

KAU = Af (42)

where the structural stiffness matrix K contains information on the geometry and current tangent tensors of
the materials within the individual subcells (fy) within the cells comprising the multiphase periodic com-
posite. The increment of the displacement vector AU contains the unknown displacement increment
coefficients in each subcell, i.e.,

AU = (AU}, . AUGY (43)
where in subcell (fy) of cell (g, r) these coefficients are

AU = [AW o), AW 10, AW (o1, AW (a0, AW (03]
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The force vector Af contains information on the externally applied deformation gradient increment AF, the
thermal stress tensors H(g’jy), the temperature deviation Af) and the tensor of viscoelastic increments AV;/,;’)) in
the subcell (By) of cell (g,r).

5. The homogenized constitutive equations

The homogenized constitutive equations of the multiphase composite are obtained as relations between
the average first Piola—Kirchhoff stress tensor increment AT, the applied deformation gradient increment
AF, the temperature increment A0 and the global viscoelastic stress increment AV as follows.

Once the solution of Eq. (42) has been established, one can proceed and determine the concentra-
tion tensors associated with the defined repeating unit cell. These tensors express the local increment
of the deformation gradient in the cell AF” in terms of the increment of the global applied external
defgfr)mation gradient AF, temperature increment A0 and of the viscoelastic deformation gradient increment
AF":

AFP) = APIAF + a#) A + AF' (44)

In this equation, A" and al#) represent the mechanical and thermal concentration tensors, respectively,

while AF|/”) is the contribution of the increments of the viscoelastic effects to the local deformation gradient
in the repeating unit cell. The instantaneous mechanical concentration tensor A is computed from
solution of Eq. (42) by imposing A = 0 and in the absence of viscoelastic effects, while the current thermal
concentration vector a®”) is computed from the solution of Eq. (42) when AF = 0 and in the absence of
viscoelastic effects. Finally, the current AF $,ﬁ’) is computed from the solution of Eq. (42) when AF = 0 and
A0 = 0 are imposed.

The stress increment in the subcell is given according to constitutive equation (27) by

ATE) — REDAFP) — HPIAQ — AV (45)

Applying the definition of the average increment of the first Piola—Kirchhoff stress tensor over the repeating
unit cell in terms of the subcell stress increment yields

<

_ 1 N,
- (@) 7(r) (B7)7(g:7)
AT = SO RP I [AT (46)

g=1 r=1 Bpy=1

Consequently, the use of Eqgs. (44) and (45) in (46) yields the micromechanically based global constitutive
relations

AT = R°AF — H'AO — AV (47)

where R* and H* are the instantaneous effective stiffness and effective thermal stress tangent tensors of the
composite which are given by

s N, 2
R = 33 S e s
g=1 r=1 r
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and the increment of the global viscoelastic stress tensor is determined from
- 1 2 ) « (B 7@
AV = — — Z Z Z h;iq)l"f'r) [R(ﬁ/)AF(Vﬁ»f) _AV®) 1 (50)

Constitutive relations (47) are the micromechanically established equations that govern the global behavior
of thermoviscoelastic multiphase composite undergoing large deformations in which any one of the phases
can be assumed, in general, to be modeled by the incremental thermoviscoelastic equations (27). Elastic,
viscoelastic and thermoelastic behavior multiphase composites at finite strains can be obtained as special
cases of Eq. (47) by an appropriate specialization the constitutive law of the phases.

It should be noted that the instantaneous effective stiffness tensor R* describes the current anisotropic
behavior of the periodic multiphase material. The specific type of the resulting anisotropy depends on the
microstructural architecture of the repeating unit cell.

6. Applications

Let us illustrate the implementation of the established constitutive relations (47) by investigating the
response of a composite material that consists of a rubber-like matrix reinforced by nylon fibers. The
material properties of a thermoelastic vulcanized rubber at a reference temperature 6, = 293 K are given in
Table 1. These properties characterize the long-term behavior of the material. In order to include its vis-
coelastic response, the following parameters have been assumed:

1
Wy = 27
The nylon fibers have been assumed to behave as a linearly elastic material with Young’s modulus, Pois-
son’s ratio and coefficient of thermal expansion, given, respectively, by (Perry, 1963): 2 GPa, 0.4, 90 x 1075/
K. The orientation of the fibers is selected to be initially in the X;-direction and their volume fraction is
Up = 0.25.
Results are given for a rubber-like matrix composite that is subjected to:

7, =102 4=1,...,N,=6

(1) thermal loading with prescribed transverse stretch,
(2) thermal loading with prescribed transverse stress,
(3) free thermal loading,

Table 1

Material properties of vulcanized rubber at 6, = 293 K (Chadwick, 1974; Morman, 1995)
Property Value
K 1950 MPa
G 0.98 MPa
m 9
n 2.5
7 ¢
o 657x107¢ /K
c1o 0.2357 MPa
co1 0.2426 MPa
C11 —0.567 kPa
C20 7.41 kPa

30 0.0464 kPa
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(4) transverse uniaxial mechanical loading at room and elevated temperature,

(5) creep caused by the application of a constant transverse uniaxial stress loading at room and elevated
temperature,

(6) relaxation caused by the application of a constant transverse stretch at room and elevated temperature.

Cases (1) and (2) will exhibit the anomalous behavior of the rubber, while case (3) will exhibit the response
in the axial direction (i.e., in the fiber direction) and transverse direction (i.e., perpendicular to the fiber),
and case (4) will exhibit the hysteresis due to the viscoelastic effects and the response rate-dependence. In all
cases the effect of the reinforcement is exhibited by comparison with the corresponding unreinforced
(ve = 0) thermoviscoelastic rubber’s response.

Fig. 3 exhibits the response of the unreinforced rubber-like matrix and the unidirectional composite
caused by the application of a thermal loading in which the temperature is incrementally increased from
0, = 293 K by 150 K. In addition, constant prescribed stretches F,, = 1.01 and 1.3 are applied in the
transverse direction. Both the thermoviscoelastic and long-term thermoelastic responses are shown. For the
low stretch value F» = 1.01, the ordinary behavior both in the unreinforced matrix and composite is
obtained in which the stress decreases with temperature, namely the stress gradient is negative. For the high
value of the stretch F», = 1.3, this gradient is positive in the case of the unreinforced matrix. But in the
composite material with the thermoviscoelastic matrix this trend is reversed yielding again the ordinary
behavior. Thus the combined effect of reinforcement and viscoelastic mechanism has a significant influence
on the material’s thermal response.

The resulting responses caused by aforementioned thermal loading applied on the unreinforced rubber-
like matrix and the unidirectional composite, in conjunction with prescribed transverse stress 7, of 0.1 and
1 MPa, are shown in Fig. 4. For the lower value of the applied stress, the ordinary behavior where positive
stretch gradients with respect to the temperature are obtained both in the thermoviscoelastic and the long-
term thermoelastic cases. For the higher value of the applied stress, T», of 1 MPa, this gradient is reversed
in the elastic case thus exhibiting the anomalous behavior of the unreinforced rubber. As is observed from
this figure, the latter behavior is lost, however, in the presence of viscoelastic effects where the response is
similar to that exhibited by ordinary materials. In conclusion, Figs. 3 and 4 show that for the chosen
material and the associated viscoelastic parameters, the viscoelastic mechanism has a peculiar effect on the
anomalous behavior of the homogeneous rubber-like materials and unidirectional rubber-like matrix

V£= 0 ve= 0.25
5 5
thermoviscoelastic thermoviscoelastic
e T thermoelastic P thermoclastic
— 3 f—
—_ 3 —_ Fpp=1.3
I <
[ o 2
: 2 R I £ A—
q 22 q F---"77
= 4 =
1
-1 | | | -1 | | |
300 340 380 420 300 340 380 420
0 (K) 0 (X)

Fig. 3. Stress—temperature response of homogeneous matrix (v = 0) and unidirectional nylon/rubber composite that are subjected to
two values of prescribed stretches in the transverse 2-direction.
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Fig. 4. Stretch—temperature response of homogeneous matrix (v = 0) and unidirectional nylon/rubber composite that are subjected to
two values of prescribed normal stresses in the transverse 2-direction.

composites. This peculiar thermomechanical behavior of rubber, which is referred to as the Gough—Joule
effect, depends on the fiber volume fraction, loading direction and viscoelastic mechanism of the constit-
uents.

Let us consider next the case of a free thermal expansion. Here the composite is subjected to an
incremental temperature rise of 150 K from 6, while keeping it stress-free, namely 7;; = 0. The resulting
axial F;; and transverse F,, = F3; stretches are shown in Fig. 5 for the homogeneous matrix and unidi-
rectional composite. The effect of reinforcement on the induced stretches is clearly exhibited in this figure.
In linearly elastic materials and composites the stretch—temperature dependence is linear. Consequently, the
effect of the existing non-linear behavior of the matrix on the composite responses can be clearly observed
from the figure. The linear axial stretch—-temperature response exhibited by the composite results from the
dominant effect of the linearly elastic nylon fibers. This follows from the high contrast between the nylon

1.06 1.06
1.041 1.04
T B i
1.021 1.02
5
/

1.00 L ! ' 1.00 I I L

300 340 380 420 300 340 380 420

0 (K) 6 (K)

Fig. 5. Axial and transverse stretches against temperature due to the free thermal expansion of the thermoviscoelastic unreinforced
matrix (vy = 0) and unidirectional composite.



J. Aboudi | International Journal of Solids and Structures 41 (2004) 5611-5629 5625

and rubber Young’s moduli which renders the effect of the matrix on the response in the axial direction
(parallel to the fiber) to be negligible. In the transverse direction (perpendicular to the fiber) the effect of
matrix is seen to be dominant. It should be mentioned that as long as a free thermal expansion is con-
sidered, the effect of viscoelastic mechanism has been found to be relatively weak so that the curves shown
in Fig. 5 almost coincide with the corresponding curves computed from the long-term material’s thermo-
elastic constitutive law. As a result, the response does not exhibit rate-dependent effects.

The response of the composite at room and elevated temperatures caused by the application of a uniaxial
transverse stress loading in the 2-direction at two rates is shown in Figs. 6 and 7. Both figures show the
resulting transverse stress 75, due to a complete cycle of loading—unloading-reloading. The figures exhibit
the effect of reinforcement (by comparison with the response of the homogeneous matrix), the effect of
loading at two values of strain rates: F» = 0.001 and 1 57!, and the effect of loading at two temperatures. In

vi=0 ; 6=293K vi=025 ; 8=293K
: T -1
; . -1 F»,=0.001s
8- | T rar000ls 8- N
A 3% ol

Taz (MPa)

Fig. 6. Stress response at room temperature of the thermoviscoelastic homogeneous matrix (v; = 0) and unidirectional composite to a
complete cycle of transverse uniaxial stress loading applied at two rates.

vi=0 ; 6=400K ve=0.25 ; 0=400K

—  Fp=0001s" |
8 --- F22=1 S-1 , P

T2 (MPa)

Fig. 7. Stress response at elevated temperature (0 = 400 K) of the thermoviscoelastic homogeneous matrix (v; = 0) and unidirectional
composite to a complete cycle of transverse uniaxial stress loading applied at two rates.
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addition, the figures clearly exhibit the hysteresis loops caused by the viscoelastic mechanism. as well as the
effect of temperature on these loops. It should be noted that due to the process of free temperature loading,
which is required to bring the composite to the elevated temperature 0 = 400 K prior to the application of
mechanical loading, there is a slight shift in the plot of the response in Fig. 7 before the starting point of the
cycle, as a result of which the entire graph is shifted.

It is also possible to detect the effect of reinforcement and elevated temperature on the composite’s
response to the full cycle of uniaxial transverse stress loading in the 2-direction by plotting F3; against F,.
This graph is shown in Fig. 8 where these effects are very well displayed. The aforementioned shift due to
the thermal loading that is required to raise the composite’s temperature from 6y to 8 = 400 K is clearly
observed.

Figs. 6-8 exhibit the response to one cycle of transverse loading of the matrix and composite. Let us
track the response to a several cycles by plotting it against time. In Fig. 9, the behavior of the rubber-like
matrix and the composite is shown at room and elevated temperature 6 = 400 K due to five cycles of
uniaxial transverse stress loading applied at a rate of F = 0.001 s~!. The graphs show the effect of
reinforcement, viscous mechanism and temperature values. The increase with temperature of the bulk and
shear moduli of the rubber matrix, results into the observed increase of the response amplitudes at elevated
temperature. Here too, the shift observed in the response at elevated temperature can be well observed. A
careful examination of the repeated patterns in Fig. 9 displays the attenuation effect caused by the visco-
elastic mechanism.

The effect of viscoelastic mechanisms at room and elevated temperature can be well exhibited by dis-
playing the creep and relaxation behavior of the unreinforced rubber-like matrix and nylon/matrix com-
posite. To this end, Figs. 10 and 11 show the resulting response to a uniaxial transverse stress loading of
T», = 2 MPa and a transverse stretch of F», = 1.5, respectively, at room and elevated temperature (0 = 400
K). Both figures show the variation of the response with time toward the final long-time values which are

F1,=0.001s"
| vf 0
——0.25 | 400K

?33

Fig. 8. The plot of F3; against F», at room and elevated temperatures (0 = 400 K) of the thermoviscoelastic homogeneous (v; = 0) and
unidirectional composite in the case of the application of a complete cycle of transverse uniaxial stress loading applied at a rate of
0.001 s
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Fig. 9. Stress response at room and elevated temperatures (6 = 400 K) against time of the thermoviscoelastic homogeneous matrix
(vy = 0) and unidirectional composite to five cycles of transverse uniaxial stress loading applied at a rate of 0.001 s~!.

T22=2MPa

b

2.6

Fig. 10. Creep behavior of the thermoviscoelastic homogeneous matrix (v; = 0) and unidirectional composite caused by the application
of a constant uniaxial transverse stress loading of 75, = 2 MPa at room and elevated temperature (0 = 400 K). The asymptotic values
are represented by horizontal lines.

depicted by horizontal lines. Both figures show that these asymptotic values are much faster approached by
in the case of the unreinforced matrix than that of the composite (due to the reinforcing effect of the nylon
fibers). In both figures, the shift due to the initial thermal loading which is observed in the creep and
relaxation curves at elevated temperature can be clearly noticed.

In concluding this section it should be mentioned that in the above examples that illustrate the composite
thermoviscoelastic response, the relaxation times have been taken as temperature-independent. In real
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Fig. 11. Relaxation behavior of the thermoviscoelastic homogeneous matrix (v, = 0) and unidirectional composite caused by the
application of a constant uniaxial transverse stretch loading of F,, = 1.5 at room and elevated temperature (60 =400 K). The
asymptotic values are represented by horizontal lines.

Wk

situation the relaxation times decrease as the temperature increases. This implies that faster viscoelastic
effects should be anticipated at elevated temperatures than those shown in these examples.

7. Conclusions

In the present investigation, a micromechanical theory based on the homogenization technique has been
derived in order to establish the global constitutive equations of composites with thermoviscoelastic rubber-
like materials undergoing finite strains. The absence of viscoelastic effects results in composites with
thermoelastic rubber-like phases that are necessarily described by entropic elasticity.

One of the main advantages of the use of micromechanics is that the establishment of composite re-
sponse and its anisotropic behavior are obtained as byproducts of the analysis. Thus, one does not need to
consider anisotropic free-energy functions in order to model, directly, the macro behavior of the therm-
oviscoelastic multiphase material which is obviously a formidable task. In addition, residual stresses in the
composite can be easily obtained by applying, prior to the application of mechanical loadings, a thermal
loading that models the thermal processing.

In the present derivation, a one-way coupling exists between the thermal and mechanical fields namely,
the temperature influences the stresses as in thermal stress problems. Generalization to full thermome-
chanical coupling (two-way coupling) which incorporates the influence of deformation on the thermal field
is possible. The derived constitutive law can be applied to study the response of composite structures, such
as plates and shells, with rubber-like thermoviscoelastic materials.
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